Elmwood no more, long live Elmwood! Elmwood Electronics and PiShop are now together!
Please order via PiShop.ca, as we are no longer taking orders through this site.
More details are in our blog!

N20 DC Motor with Magnetic Encoder - 6V


Elmwood Electronics has stopped accepting orders. This product might be available at PiShop.ca. Please check this blog post about our recent team merger.

The first step in a robotics project is to get a motor spinning. Once you've done that you quickly learn that not all motors go the same speed, even if they are the same part number! There are always variations that relate to voltage, environment, and manufacturing changes. So, the second step is to figure out how fast it's going! Turns out that's not so easy, but the best way to get started is to add an encoder wheel and an optical or magnetic counter. As the motor turns, the attached encoder wheel spins, causing the counter to detect each passing spoke and that lets your microcontroller count and determine speed.

If you want to do one better, add a second counter, and now you can tell direction as well as speed! All this wiring is kind of a pain, so that's why this motor is really nice! It has a magnetic wheel and two hall effect sensors already attached. Using this motor is a breeze, and it's a nice small motor as well, in the 'standard' N20 size.

Provide 4.5 to 6V DC (nominal) to the white and red wires - these connect to your motor driver, and can be PWM'd for speed adjustment and direction by using an H-bridge.

Connect the black wire to your microcontroller ground pin, and the blue wire to 3-5V DC (we tried both, works fine) use whichever voltage your microcontroller uses. Then you can read the hall effect outputs on the yellow and green wires. Adafruit has an example sketch here for Arduino, it can be adapted to other languages - basically you just want to interrupt on one of the encoder pins, use count the time since the last interrupt, and multiply the count time by 14-counts-per-revolution and the gear ratio.

We have motors with different gear ratios; each uses 6V nominal power for the motor and draws about 100 mA (200 mA when stalled). The gear ratio will not affect the current draw but does change the torque and RPM. See below for the no load/rated/stall current, RPM and torque for a range of ratios!


  • Dimensions (excluding shaft): 30.5mm x 18.5mm
  • Wire Length: ~150mm long

Ratio Comparison Table:

Collections: Adafruit in Canada

Type: DC/Gearmotor